Pd. _____

Find the slope from the following points, graphs, and linear equations.

1. $p_1 = (2,1)$ and $p_2 = (1,4)$

2. $p_1 = (-3, -2)$ and $p_2 = (0, 7)$

3. $p_1 = (2,2)$ and $p_2 = (4,2)$

Slope:

Slope:

Slope:

4. $p_1 = (3, -2)$ and $p_2 = (3, 7)$

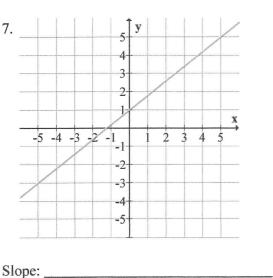
-5 -4 -3 -2/-1 -2 -3--4

Slope:

-5 -4 -3 -2 -1 -2--3--4--5-

Slope:

-5


-5 -4 -3 -2 -1

-2

-3-

-4 -5

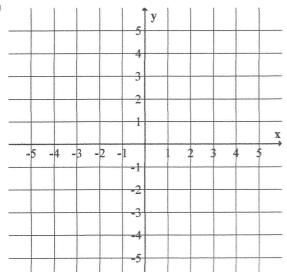
Slope:

Slope:

9. v = -2x - 3

10. $y-5=\frac{2}{3}(x+1)$

- Slope: Slope:


11. $3x + 4y = 8$	12. $x = -5$
Slope:	Slope:
Write the equation of the line in all three forms give	
13. $m = \frac{2}{3}$ and $p = (3,5)$	14. $m = -\frac{4}{5}$ and $p = (1, 2)$
Point-Slope:	Point-Slope:
Slope-Intercept:	Slope-Intercept:
Standard Form:	Standard Form:
Write the equation of the line in all three forms give	
15. $m = -3$ and $y - intercept = 5$	16. $m = -\frac{3}{2}$ and y -intercept = -3
Point-Slope:	Point-Slope:
Slope-Intercept:	Slope-Intercept:
Standard Form:	Standard Form:
Write the equation of the line in all three forms give 17. $p_1 = (2,2)$ and $p_2 = (4,2)$	en two points. 18. $p_1 = (3, -2)$ and $p_2 = (3, 7)$
17. P ₁ (2,2) and P ₂ (3,2)	12 (7)
Point-Slope:	Point-Slope:
Slope-Intercept:	Slope-Intercept:
Standard Form:	Standard Form:
Standard Form.	Started Commit
19. $p_1 = (2,1)$ and $p_2 = (1,4)$	20. $p_1 = (-3, -2)$ and $p_2 = (0, 7)$
Point-Slope:	Point-Slope:
Slope-Intercept:	Slope-Intercept:
Standard Form:	Standard Form:

AP Calculus AB – Summer Work – 1.2 Functions and Graphs

1. $y = 4 - x^2$

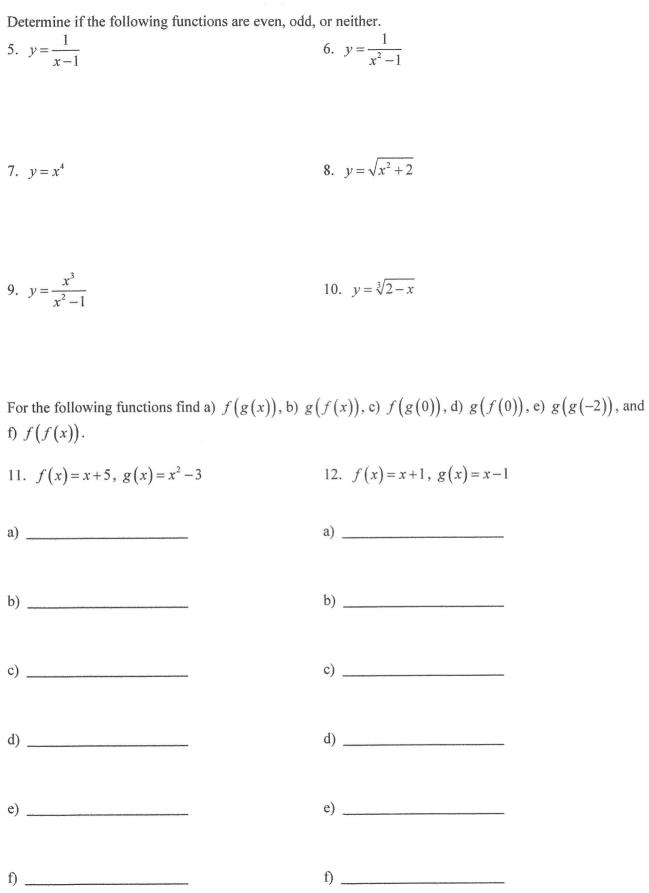
a) _____

c)

For the following functions find the a) domain, b) range, c) graph, and d) any symmetries. 2. $y = 2 + \sqrt{x-1}$

c)

a) _____


3. $y=1+\frac{1}{x}$

c) -5 -4 -3 -2 -1 4. $y = x^{2/3}$

d) _____

c) -5 -4 -3 -2 -1

d) _____

Name:	Date:	Pd	2010–2011
Name:AP Calculus AB – Summer Work – 1.3	Exponential Functions		
For the following functions find the a) of 1. $y = -2^x + 3$ a)	2. $y = e^x + 3$		
b)			
	c)		
c)		5 y	
		4	
3		3	
		2	
1		1	x
-5 -4 -3 -2 -1 1 2 3	4 5 -5 -4	-3 -2 -1 1 2 3	4 5
		-1	
-2		-3	
-3		-4	
-5		-5	
d)	d)		
3. $y = 3e^{-x} - 2$	4. $y = -2^{-x}$		
a)	a)		
b)	b)		
c) †y	c)		
- 5		5	
4		4	
3		2	
2		1	
	X 5 4	-3 -2 -1 1 2 3	X 5
-5 -4 -3 -2 -1 1 2 3		-1 -1	
		-2	
		-3	
		-4	
-5		-5	
d)	d)		

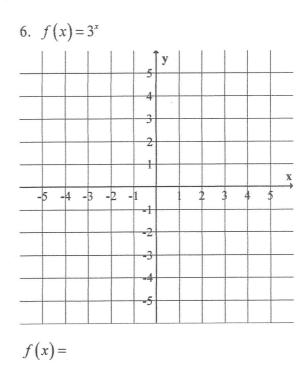
5. The population of Standardsville is 500,000 and is increasing at the rate of 3.75% each year. Approximately when will the population reach 1 million?
6. The half-life of phosphorus-32 is about 14 days. There are 6.6 grams present initially.a) Express the amount of phosphorus-32 remaining as a function of time t.
b) When will there be 1 gram remaining?
7. Determine how much time is required for an investment to triple if interest is earned at the rate of 4.25% compounded weekly (remember 52 weeks in a year)?
8. Suppose that a colony of bacteria starts with 1 bacterium and doubles in number every half hour. How much bacteria will the colony contain at the end of 24 hours?
Rewrite the following exponential expressions to have the indicated base. 9. 9 ^{2x} , base 3
10. 16^{3x} , base 2
11. $\left(\frac{1}{27}\right)^x$, base 3

$3. f(x) = \frac{x+3}{x-2}$		4. $f(x) = x^2 + 2x + 1$		16
	~			
Graph the given function $f($	(x) , its inverse $f^{-1}(x)$	and $y = x$ on the sam	ne axes in different colors.	

 $f^{-1}(x) =$

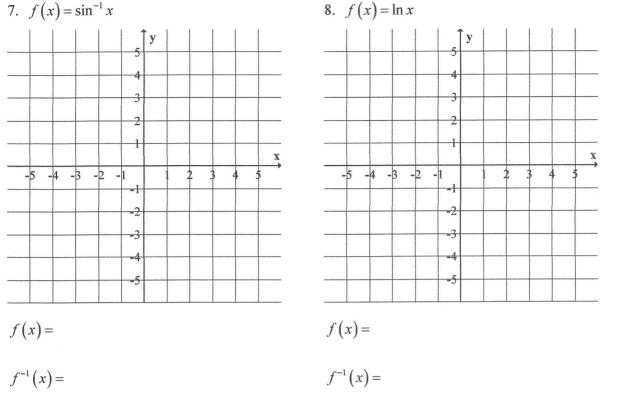
Date:

2. $f(x) = x^3 - 1$


AP Calculus AB – Summer Work – 1.5 Functions and Logarithms

Find f^{-1} and verify that $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$.

1. f(x) = 2x + 3

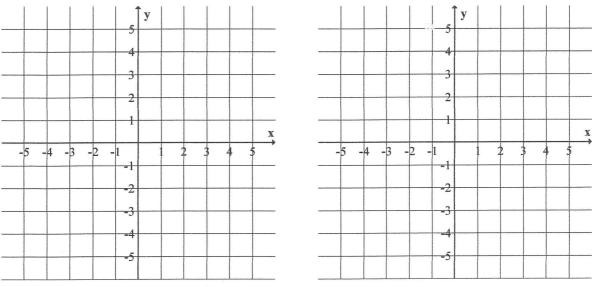

f(x) =

 $f^{-1}(x) =$

2010-2011

Pd. _____

9. $1.045^t = 2$ 10. $e^{0.05t} = 3$


Solve the equation algebraically. Check your solution graphically. 9. $1.045^t = 2$ 10. $e^{0.05t} = 3$ 11. $e^x + e^{-x} = 3$ (Quad Formula)

Solve for y. 12. $\ln(y-1) - \ln 2 = x + \ln x$

Name: Date: AP Calculus AB – Summer Work – 1.6 Trigonome	Pd 2010–2011
Give the measure of the angle in radians and degree 1. $\sin^{-1}(0.5)$	es. Give exact answers whenever possible. 2. $\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$
radians: degrees:	radians: degrees:
3. $\tan^{-1}(-5)$	$4. \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$
radians:degrees:	radians:degrees:
Specify the period, the amplitude, and graph the form $y = 1.5 \sin(2x)$	llowing trigonometric functions. 6. $y = -3\cos(2x)$
period:	period:
amplitude:	amplitude:

Specify the period, domain, range, and graph the following trigonometric functions. 8. $y = -\tan(3x + \pi) + 2$

7.
$$y = 3\csc(3x + \pi) - 2$$

10. $\cot x = -1, -\infty < x < \infty$

period: _____

range: _____

Solve the equation in the specified interval. 9. $\cos x = -0.7, \ 2\pi \le x < 4\pi$

period:

range:

5.
$$\lim_{y \to -3} \frac{y^2 + 4y + 3}{y^2 - 3}$$
 6.
$$\lim_{x \to \pi/2} \ln(\sin(x))$$

AP Calculus BC – Summer Work – 2.1 Rates of Change and Limits

Pd.

2010-2011

Explain why you cannot use substitution to find the limit. Find the limit if it exists. 8. $\lim_{x\to 0} \frac{1}{r^2}$ 7. $\lim_{x \to -2} \sqrt{x-2}$

10.
$$\lim_{x\to 0} \frac{(4+x)^2-16}{x}$$

9. $\lim_{x \to 0} \frac{|x|}{x}$

12. $\lim_{x \to 0} \frac{\frac{1}{2+x} - \frac{1}{2}}{x}$ 11. $\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4}$

Determine the limit graphically, confirm algebraically.

14. $\lim_{x \to -1^+} f(x) =$

$$\lim_{x \to -1^{-}} f(x) =$$

$$\lim_{x \to -1^{-}} f(x) =$$

$$\lim_{x\to 0^+} f(x) =$$

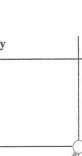
 $13. \lim_{x\to 0}\frac{\sin(2x)}{x}$

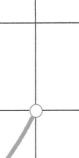
 $\lim_{x\to 0^-} f(x) =$

$$\lim_{x\to 0^-} f(x) =$$

$$\lim_{x \to -1} f(x) =$$

$$\lim_{x \to 0^+} f(x) =$$





14. $\lim_{x \to 0} \frac{\sin x}{2x^2 - x}$

$$\lim_{x \to 0^{-}} f(x)$$

 $\lim_{x\to 2^+} f(x) =$

- $\lim_{x\to 0} f(x) =$ $\lim_{x\to 2^{-}} f(x) =$